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A numerical analysis of the fracture behaviour of alumina has been performed based on 
experimental crack growth studies. Single-edge notch bend and short-double cantilever beam 
specimens of diverse grain size alumina were tested under quasi-static growth conditions. 
Constitutive equations for the alumina were obtained from experimental results and used to carry 
out finite element analyses. The agreement between numerical and experimental results is very 
promising, e.g. the influence of grain size on fracture behaviour can be predicted accurately. The 
underlying toughening mechanisms are discussed. 

1. I n t r o d u c t i o n  
Ceramic materials exhibit several favourable proper- 
ties (chemical inertness, high temperature capability, 
low density, hardness, stiffness and compressive 
strength) which make them potential products to be 
employed in many different engineering applications 
[1]. Their poor frficture resistance and brittle behavi- 
our, that lead to catastrophic failures, have, however, 
prevented their use on many occasions. Although 
much research effort has been carried out in recent 
years in order to gain a better knowledge of the 
fracture mechanisms in these materials, some ques- 
tions are still unsolved, even for monolithic ceramics. 

At first glance, monolithic ceramics seem ideal ma- 
terials for application of linear elastic fracture mech- 
anics (LEFM): in general they are brittle and do not 
experience plastic deformation, at least at room tem- 
perature. Today, however, there is strong experi- 
mental evidence that the fracture behaviour of ceram- 
ics has to be analysed more carefully. Some ceramics 
show a macroscopic increase in the fracture resistance 
(R) as the crack grows. This R-curve is not a unique 
material property but depends on geometry and test- 
ing conditions [2-5].  Experimental c r a c k  growth 
studies of long cracks in alumina have shown that the 
source of this non-linearity is not located ahead of the 
crack tip but in the "wake" of the crack. There is 
compelling evidence of crack surface interaction, e.g. 
by frictional tractions around bridging grains, which 
produces a strong toughening effect. Although micro- 
cracking or damage in the frontal crack tip zone has 
been reported recently [6], there is no experimental 
evidence that such a frontal microcrack zone signific- 
antly contributes to an increasing crack resistance [7, 
8]. A microcrack zone, once part of the wake, may, 

however enhance the frictional tractions because of 
the dilational strains. When the material behind the 
crack tip is removed, the fracture resistance drops to 
the initial value in a notched specimen, indicating that 
wake effects in the rear part of the crack are causing 
the R-curve behaviour [9]. This wake zone can reach 
some millimetres [in length], approximately the same 
order of magnitude as the crack length, consistent 
with the strong crack size effects experimentally ob- 
served. This kind of behaviour was found to occur in 
concrete and cementitious composites more than ten 
years ago and now it is widely accepted that fracture 
toughness, (e.g. K~c) in the classical sense of LEFM, 
cannot be used to explain the fracture of these mater- 
ials [103. 

In order to explain these phenomena, various 
models have been developed [11 14]. All these 
models can be considered as simplifications of the 
cohesive crack model (CCM). This model, proposed 
by Hillerborg et al. [15], can be treated as a particular 
case of the Barenblatt model [16]. The material be- 
haves in a linear elastic manner outside of the crack. 
The crack is, however, able to transfer stresses in 
between its surfaces. The cohesive stress cy at a given 
interaction site depends on the crack opening dis- 
placement w in that position, according to a strain- 
softening relationship ~-w which is a material prop- 
erty. This leads to a linear elasticity problem with 
non-linear boundary conditions that must be solved 
by means of numerical methods. In order to simplify 
the solution, the former quoted models [11-14] make 
the assumption that the crack faces remain straight 
during the crack propagation. The accuracy of this 
hypothesis has not been rigorously proved, although 
some experimental results support it. Moreover, 
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additional suppositions are needed about the magni- 
tude of the angle between crack surfaces during crack 
propagation. 

The main disadvantage of the model is that the 
softening curve cy-w cannot be measured experi- 
mentally because of the strain localization within the 
crack. Similarly, it is not possible to measure the 
stress-strain relationship for a metal after necking 
begins. The softening curve is therefore chosen, in the 
previously mentioned models, in such a way that it 
matches the experimental results. Even so, there is 
no clear evidence of whether or not it is geometry 
dependent. 

The aim of this paper is to study the applicability of 
the CCM to characterize the fracture behaviour of 
a monolithic ceramic, such as pure polycrystalline 
alumina. Both experimental and numerical analyses 
have been carried out. Experimentally, two different 
geometries with varying notch depths have been 
tested. The variables needed to check the model have 
been measured; fracture energy, fracture resistance, 
crack length, etc. A special effort has been made to 
determine the constitutive equation for the cohesive 
crack from the available experimental data and to 
minimize the number of adjustable parameters. The 
strain-softening curve features have been related to the 
microstructural characteristics and the mechanical 
properties of the A12 03. In the numerical field, a de- 
tailed finite element analysis of the geometries tested 
has been performed. The finite element solution of the 
displacement field in the cohesive crack is more accu- 
rate than the one assumed by the simplified models 
previously mentioned. When these precautions are 
taken, it is expected that it will become clear whether 
the CCM is able to explain the fracture behaviour of 
polycrystalline alumina or the agreement between nu- 
merical and experimental results, reported in other 
investigations, is a result of the possibility of choosing 
freely some of the parameters of the model. The influ- 
ence of the grain size on the fracture resistance and 
brittleness is also studied. 

2. Experimental procedure 
Various high purity aluminas were tested. All of them 
were processed from the same starting powder (CT 
8000, Alcoa, Frankfurt a. M., FRG). Samples were 
cold isostatically densified and sintered in air at 
1700 ~ using different holding times to obtain aver- 
age grain sizes of 4, 9 and 16 gm. 

Single-edge notched bend (SENB) and short double 
cantilever beam specimens (s-DCB) were machined 
from these batches (dimensions sketched in Fig. 1). 
All specimens were fractured under conditions of slow, 
quasi-static crack growth, from a starter notch of 
depth ao. Load (F), load point displacement (6), 
crack length (a) and crack opening displacement at the 
initial notch CTOD were recorded during tests (the 
last two parameters with a travelling microscope) and 
the crack resistance was evaluated applying a linear 
elastic compliance method. 

SENB specimens, from the 16 gm grain size batch, 
with four different initial notch lengths were tested 
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Figure 1 Geometry and dimensions of the specimens. (a) SENB, 
(b) s-DCB 

(ao/d = 0.22, 0.40, 0.60 and 0.75). Only one notch 
length was used with s-DCB specimens (ao/d = 0.67). 
Two or three tests were carried out with each geo- 
metry in order to check repeatability. In addition, 
SENB specimens from the 4 and 9 gm grain size 
batches, with an initial notch length ao/d = 0.60, were 
tested to study grain size effects on fracture and 
brittleness. Tests results and discussion are presented 
in the next sections. 

3. Cohesive Crack Model 
3.1, Hypotheses 
The CCM assumes that the material behaves in a lin- 
ear and isotropic manner, both in tension and com- 
pression, when stresses are below the tensile strength 
cyt. The material is then characterized by means of 
Young's modulus E and Poisson's modulus v, without 
any reference to anelastic or time dependent phe- 
nomena. Values for these parameters have been 
chosen from literature [17], as E = 360 GPa  and 
v = 0.23. 

When the stress overcomes cyt in one point of the 
material, a cohesive crack perpendicular to the max- 
imum tensile stress appears in this zone. Deformation 
is localized within the crack and the relation between 
crack opening displacement w and transferred stress 
cr is given by the softening curve (Fig. 2), a material 
property according to the CCM. The softening curve 
can be chosen rather arbitrarily but must always fit 
some restraints. Firstly, when w = 0, the stress trans- 
ferred through the crack has to be equal to cy t. Sec- 
ondly, there is critical value of w, named we, defined 
such that if w >~ wc then ~ = 0. Finally, the area 
under the softening curve is the fracture energy GF; 
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that is the energy needed by unit area to create 
a new separated surface. 

The material will develop an interaction zone, 
where cohesive stresses are acting, in response to an 
external load. The CCM assumes that there is not 
stress singularity at the tip of the crack because the 
stress at that point is cy,. The length of the interaction 
zone and the intensity of the cohesive forces depend on 
the strain-softening curve and on the external load. 
Both can be evaluated taking into account that the 
stress intensity factor due to cohesive forces must be 
equal to the one induced by external forces. This fact 
implies solving a non-linear problem because the dis- 
placements behind the crack tip are a function of both 
external and cohesive forces. When the cohesive forces 
can no longer equilibrate the stress intensity factor, 
the crack tip will propagate a definitive length and 
new bridging forces will be produced behind it. 

No material can withstand an infinite stress. In 
metallic alloys, plastic deformation occurs around the 
crack tip, blunting the crack and avoiding stress singu- 
larity. When dislocation plasticity is not very likely (as 
happens in brittle materials such as ceramics, con- 
crete, rocks, etc.), a different mechanism must appear 
in order to shield the crack against infinite stresses. In 
MgO partially stabilized zirconia, which is a par- 
ticularly tough ceramic, tetragonal precipitates of zir- 
conia, ahead of the crack tip, undergo a martensitic- 
type transformation to the larger-volume monoclinic 
symmetry when external stress is applied. This mech- 
anically induced transformation produces a volumet- 
ric strain and shear distortion. This, in turn, causes 
energy to be dissipated and the stress concentration to 
be smoothed out. Another mechanism of relaxation of 
the high stress gradients ahead the crack tip is micro- 
cracking. Extensive microcracking is very often found 
in fracture tests of ceramics and ceramic composites at 
elevated temperatures. The microcracks, that are de- 
veloped along grain boundaries and interfaces, reduce 
the elastic modulus of the material and the stresses 

ahead of the crack tip. Finally, crack tip shielding in 
brittle materials can be achieved by the development 
of cohesive forces behind the crack tip that equilibrate 
the external crack driving force. 

The use of the CCM to study the fracture behaviour 
of one particular material is justified when the main 
toughening mechanism is due to the development of 
cohesive forces. In polycrystalline alumina neither dis- 
location plasticity nor transformation toughening 
take place and, thus, microcracking and interactions 
in the wake of the crack are the main candidates to 
account for crack growth resistance in A12 03.  Micro- 
cracking of A1203 at room temperature has been 
reported recently [4] but other studies have not found 
it [6, 7], and to date there is no evidence that the 
microcrack zone contribution dominates the experi- 
mentally observed crack growth resistance. 

According to the hypotheses of the CCM, when 
a specimen of a cohesive material is loaded up to final 
failure, the work of the external forces must be equal 
to Gv times the cracked area because all of the energy 
supplied to the specimen is employed in creating 
new free surfaces. In other words, the fracture energy 
experimentally measured as the ratio between the 
external work and the surface crack area, must be 
constant and independent of geometry and loading 
conditions. GF values are shown in Table I for the four 
different SENB and the s-DCB specimens of 16 Ilm 
average grain size A1203 tested. Fracture energy is 
fairly constant with a mean value of 76 N m - i. These 
results indicate that energy dissipation due to micro- 
cracking in front of the crack tip is not a relevant 
quantity. The damage induced due to microcracking 
increases with maximum load, which depends on geo- 
metry, initial notch length and size. If this mechanism 
was active, the bigger the specimens, the more energy per 
unit area would be used to break them. It may thus be 
concluded that the cohesive forces developed behind 
the crack tip, due to grain bridging and interlocking, 
are the most important toughening mechanism in 
polycrystalline alumina. Then, the CCM seems to be 
appropriate to model its fracture behaviour. 

3.2. Determination of the softening curve 
for alumina 

As was pointed out before, the fracture behaviour is 
determined by the cy w relationship. The origin of this 
behaviour is well documented from the experimental 
point of view: microscopic in situ observations of the 
crack path have shown the existence of crack surface 
interactions [7, 18], crack bridging due to serrated 
grains [18] and unbroken ligaments [19]. There is, 
however, presently no experiment known to the 
authors which measures directly the amount of 

TABLE I Experimentally measured fracture energy for AI20 a 

Specimen type SENB SENB SENB SENB s-DCB 

ao/d 0.22 0.40 0.60 0.75 0.67 
GF(N m - ~ ) 76.8 72.2 80.2 71.4 78.1 
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stresses transferred between the crack faces and there- 
fore indirect procedures must be employed in order to 
evaluate the softening curve shape. 

The tensile strength (7t was chosen equal to 
200 MPa, in accordance with the values reported in 
the literature [17]. In addition, Steinbrech et al. [14] 
have recently measured the critical value of the crack 
opening displacement we for different grain size poly- 
crystalline aluminas and found that it is equal to one 
quarter of the mean grain size. They rationalize this 
experimental result quite simply: on average an indi- 
vidual grain should be removable from the opposite 
crack surface if it is implanted there with a depth 
between zero and one half of its diameter. Otherwise it 
is extracted from the actual surface; thus, on average, 
one quarter of the diameter defines separation. 

Different softening curve shapes have been pro- 
posed successfully for various materials: bilinear and 
exponential softening curves for concrete and light- 
weight concrete [20, 21]; power-law softening for 
cementitious composites and monolithic ceramics [11, 
14, 22]. Recently, the CCM has been used to evaluate 
the fracture behaviour of fibre-reinforced C-SiC ce- 
ramic matrix composite [23]. The analytical expres- 
sion of the softening curve was theoretically deter- 
mined from the mechanical properties of the matrix, 
fibres and interfaces, according to the studies of Thou- 
less and Evans [24]. It has been found that the stress 
transferred through the crack increases at the beginning 
with the displacement w due to the bridging effect of 
the fibres. After reaching a maximum, the softening 
curve shows a descent in the cohesive stresses and the 
shape of the curve is almost bilinear. The two 
branches of the bilinear softening curve respond to 
different mechanisms of energy dissipation: the first 
takes into account the bridging effect of the fibres just 
behind the crack tip and the second is related to 
decohesion and pull-out between fibres and matrix. 

When the values of (7t, we, and Gv are fixed, the 
different types of softening curves look very much 
alike (Fig. 2) and the finite element analyses further 
show that similar results are obtained [13]. Thus, we 
have chosen a bilinear softening curve, given by 

(7 t - -  (71 
(7 = (7, - - w  i f0~<w~<wl (la) 

W1 

(71 
(7  ~-" ( 71  

W c - -  W 1 

(7 = 0 

(w - wl) i fwl ~<w~<wc (lb) 

if w >~ wc (lc) 

where wt and (71 are the displacement and the stress at 
the knee, respectively. If we consider that 

( T t W 1  -~- ( 7 1 W c  
G~ = (2) 

2 

there is only one degree of freedom that we can use to 
fit experimental and numerical results. 

3.3. Numerical procedure 
The numerical technique of the influence matrices has 
been used to solve this non-linear problem [20]. The 
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Figure 3 N u m e r i c a l  ana lys i s  of  a cohesive crack .  N o t a t i o n  

outline of this procedure is: let us assume we have 
a linear elastic solid in which a cohesive crack has 
been propagated in mode I from an initial notch 
(located in the node no) up to node k due to an 
external load F (Fig. 3). The cohesive forces Pj applied 
in the nodes and the crack opening displacements wi 
are related according to the expression 

W i -= K i j P  j + C i F  , i = no, k (3) 

where K and C are influence matrices. The element 
K u represents the crack opening displacement in the 
node i when a unit force is applied in the nodej. In the 
same way, the element Ci is the crack opening dis- 
placement produced in the node i when a unit external 
force is applied. The relationship between cohesive 
forces and crack openings is given by 

(Aab(7(wj)/2 if j = no 

Pj = tAab(7(wj) if j = no + 1, k -  1 (4) 

(Aab(7t if j = k 

where (7(w) is the softening function, b the thickness of 
the specimen and Aa the distance between adjacent 
nodes. The factor 2 dividing the load in the node no is 
due to the fact that only one half of the crack around 
the notch is within the cohesive zone. If we add the 
condition that w, = 0 to Equations 3 and 4, we have 
a non-linear system of equations that we can solve 
using the Newton method. The results of the analysis 
are the stresses and displacements on the cohesive 
crack and the external load. We can now assume that 
the crack has propagated one element (up to the node 
k + 1) and repeat the whole procedure. The main 
advantage of this procedure is that the number of 
active degrees of freedom is reduced to those on the 
cohesive zone and the solution of these small non- 
linear systems of equations is very fast. The effort to 
evaluate the influence matrices has to be done only 
once for each geometry. 

After each crack increment, we can evaluate the 
displacements on the crack by means of Equation 
3 and the displacement of the loading point 5 is given 
by 

5 = DjP~ + DFF (5) 

where D is a new influence matrix. Dj is the displace- 
ment of the loading point when a unit force is applied 
on the node j. Dv is the displacement of the loading 
point when a unit force is acting on this point. 

When both the external load and the crack length 
are known, the calculation of the fracture resistance 



T A B L E I I Softening curve parameters for AI203 

Gra in  size o t Wc GF GFI GF2 Wl ~1 
(lam) (MPa) (~tm) (N m - l) (N m - ~) (N m ~) (gm) (MPa) 

16 200 4.00 76.1 43.6 32.5 0.4 18.06 
9 200 2.25 60.3 43.6 16.7 0.4 18.06 
4 200 1.00 49.0 43.6 5.4 0.4 18.06 

R is straightforward, according to the expression, 

R - (6) 
E 

w h e r e  K R is the applied stress intensity factor. KR can 
also be calculated by summing up the stress intensity 
factors due to the cohesive forces. When a stress c~(x) 
is applied on a crack of length a, as depicted in Fig. 4, 
the stress intensity factor is, 

2c~(x) [ a x ]  
dK~,(a, x) - (rca)l/~ 2 H ~t'a dx (7) 

where the non-dimensional function H(a/d, x/a) de- 
pends on the geometry and, for a beam of infinite 
length, can be found in the literature [24]. The crack 
growth resistance due to all the cohesive forces is thus 
given by 

~" 2 ~ ( x ) [ a  X ] d ,  
KR(a) = j,o(rCa)l/zH dx (8) 

Expression 8 shows that the crack growth resistance is 
a complex function of the softening curve and the 
geometry. In the asymptotic limit, when the length of 
the cohesive zone is very small compared with the 
crack length and the crack is embedded in an infinite 
solid, the fracture resistance R ~ is equal to the frac- 
ture energy Gv. When these limit conditions do not 
occur, however, the fracture resistance curve will de- 
pend strongly at the beginning on cyt and the slope of 
the softening curve. As the wake interaction zone 
develops, the whole shape of the softening curve, and 
not only the value of GF, influences the crack growth 
resistance curve. 

Finally, the numerical analyses carried out show 
that the length of the wake interaction zone shrinks 
when the crack tip is nearing the back face of the 
specimen. In that situation, the effect of ot and the 
shape of the softening curve on the.fracture resistance 
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Figure 4 Single-edge notched bend specimen notation. 

are less important and R is mainly a function of the 
total fracture energy GF and the geometry. 

The influence matrices K, C, D and the coefficient 
DF for the SENB geometry were obtained using the 
finite element method. The mesh used had one hun- 
dred elements on the crack, in order to capture the 
high stress gradients that are found around the cohe- 
sive crack. As the material outside of the crack is linear 
elastic, the influence matrix coefficients can be used for 
materials with different elastic properties through 
simply multiplying by the ratios of the elastic con- 
stants. 

4. Results and discussion 
4.1. Fracture resistance curve 
Experimental results of crack growth resistance 
against crack length are shown in Fig. 5 for SENB 
specimens of the material with grain size equal to 
16 ~tm. Results of different tests for each initial notch 
length are very similar but strong bffects of specimen 
geometry can be noticed on crack resistance curves. 
The solid lines in the same figure are the results ob- 
tained by applying the CCM. The material properties 
used are listed in Table II. As was mentioned before, 
only one parameter (wl) was chosen freely in order to 
match experimental and numerical results. As can be 
seen, there is a very good agreement between both. In 
addition to this, experimental and numerical results of 
the load (F) against displacement (6) curves have been 
plotted in Fig. 6a to d for the four SENB geometries. 
Again, the agreement is good not only in the magni- 
tude of the maximum load but also in the tail of the 
curves. The value of the flexure elastic modulus used 
to evaluate these curves was 252 GPa  and it was 

150- 

1 0 0 -  

r E 

z 
Q 

50- 

0 I ' I ' I I ~ I 

0.2 o.,~ o16 o'.s ~.,O- aid 
Figure 5 Crack growth resistance curves for coarse grained AI203 
(grain size 16 gm). SENB specimens. Solid lines show the numerical 
results. 
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Figure 6 Experimental (dashed line) and calculated (solid line) load-displacement curves for A1203. Grain size 16 ~tm. (a) ao/d = 0.75, 
(b) ao/d = 0.60, (c) ao/d = 0.40, (d) ao/d = 0.22. 

determined from the experimentally measured initial 
compliances. Fig. 7 shows both numerical and experi- 
mental results of CTOD against crack length. 

These results support the assumption that fracture 
behaviour of A1203 at room temperature can be cor- 
rectly modelled by'means of the CCM, especially if the 
experimental evidence that has been discussed in pre- 
vious sections is taken into account. Moreover, 
through the shape of R-curves it is possible to obtain 
a better understanding of fracture processes in these 
materials. As can be seen in Fig. 5, the R-curve rises 
almost vertically from the beginning of the test, up to an 
initial value close to 35 N m - 1. A sharp change in the 
slope from this point takes place, and the R-curve 
continues growing with a slope that seems to be re- 
lated to the initial notch length. Finally, all the curves 
merge when the crack has propagated to 90% of the 

8.0 

=L 

9~.o 
t.-- 

0 
0.2 1.0 

//0 �9 
/ r  

/ 
/* 

/ / /  @ //o @ ~ �9 / / r //or �9 

0.4 0.6 0.8 
aid 

Figure 7 Displacements at the initial notch tip for coarse grained 
alumina. SENB geometry. Broken lines show the numerical results. 
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beam depth. The fast initial growth of the fracture 
resistance is due to the high cohesive stresses that are 
developed just behind the crack tip. The value at- 
tained after this initial growth does not depend on the 
geometry (because the size of the wake zone is small 
compared with notch length and the specimen's di- 
mensions) and it is related to the fracture energy 
Grx (see Table II) which is defined as 

fO va (It + (5"1 GEl = cy(w)dw = ~ w l  (9) 

as opposed to Gv2(Gv2 = G F -  GEl). Crack bridging 
due to serrated grains and unbroken ligaments [19] or 
non-uniform through-thickness crack propagation 
and the presence of localized fields of residual stresses 
can be the physical mechanisms responsible for such 
behaviour. All of them have in common that they are 
able to develop high cohesive stresses when small 
displacements are involved. The crack opening dis- 
placement profiles (see Fig. 8) show that this zone, 
characterized for COD values under 0.4 pm, is quickly 
developed when the crack begins to propagate. The 
size of this zone is always very small and, therefore, the 
amount of energy dissipated can be considered a spe- 
cific property of the material that remains constant in 
spite of other microstructural parameters such as 
grain size. 

After this initial stage, the fracture process zone is 
fully developed behind the crack tip. Its length (COD 
under 4 pm in Fig. 8) can extend some millimetres, 
according to experimental observations in AI203 
[7, 8]. The R-curves for different initial notch lengths 
meet when the crack tip is nearing the back face of the 
specimen. In this situation, the fracture process zone 
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Figure 8 Evolution of crack profile with crack length. 

shrinks and its length is the same for all the specimens. 
The fracture resistance of the specimens at this point 
depends only on the total fracture energy Gv because 
the shape of the softening curve is the same for all. 

A brief comment can be made at this point concern- 
ing the accuracy of the simplified models developed to 
apply the CCM to ceramic materials [11 14]. The 
main assumption of these models (crack surfaces re- 
main straight during crack growth) can be verified 
with the crack displacement profiles in Fig. 8. The 
general behaviour is well predicted but we must be 
aware that small changes in COD near the crack tip 
lead to relatively large changes in crack growth resist- 
ance. This may explain why the softening curve para- 
meters differ among the various models in order to 
explain experimental results. These differences reflect 
the degree of accui'acy of each model and not diverse 
constitutive equations. 

4.2. Influence of grain size 
R-curves can be seen in Fig. 9 for A1203 with various 
grain sizes. The specimens' geometry was SENB with 
an initial notch length ao = 0.6d. Softening curve 
parameters, listed in Table II, have been chosen in 

harmony with the criteria mentioned before. The 
parameters %, wl, and % are not grain size depend- 
ent and wo is equal to one quarter of the grain size. The 
agreement between numerical and experimental re- 
sults is good and the R-curve shows the features men- 
tioned in the preceding paragraph. As the softening 
curve is the same for the three materials at the begin- 
ing (w < wl ), they exhibit identical initial slopes of the 
fracture resistance curve. When w reaches wl at the 
notch, the differences in the softening curve lead to 
changes in the R-curve for the three A1203. The re- 
sults of the finite element analyses show that, right 
after this point is attained, the displacements in the 
wake of the crack are smaller for the fine grained 
alumina (the material with lower wc and GF2 ) and the 
cohesive stresses are larger, leading to a slightly larger 
crack growth resistance value when compared with 
the coarser grained A12Oa. As the maximum load is 
attained for that value of the crack growth resistance, 
it turns out that the load bearing capacity of the fine 
grain alumina is larger than the one shown by the 
coarser grain materials (Fig. 10). It is also worthwhile 
to note that the same behaviour can be found in the 
experimental results plotted in Fig. 9, where, the lower 
the grain size, the larger the initial value of the crack 
growth resistance. 

The smaller the grain size, the lower the amount of 
energy that is dissipated due to friction among crack 
surfaces and grain interlocking. These features are 
reflected in the model through the Gv2 value which 
diminishes with grain size (see Table II). While, for the 
coarse grained alumina, the amount of energy dissip- 
ated just behind the crack tip is roughly the same as 
that spent in the wake of the crack, the situation 
changes completely for the fine grained material, 
where a four-to-one ratio between them can be found. 
This leads to a more brittle behaviour with finer grain 
sizes, as can be seen from the load-displacement 
curves plotted in Fig. 10. This behaviour is also shown 
in Fig. 9. The A1203 with coarse grain size exhibits 
a steadly rising R-curve, which is caused by the devel- 
opment of the wake interaction zone as the crack 
grows. On the contrary, the wake interaction zone for 
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Figure 9 Crack growth resistance curves for AI203 with various 
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the fine grained alumina is fully developed very soon 
and the material shows a flat crack growth resistance 
curve. Only when the crack reaches the back face of 
the specimen is there an increase in the R-curve due to 
the effect of the geometry. 

5. Conclusions 
An experimental and numerical study has been per- 
formed to evaluate the ability of the cohesive crack 
model (CCM) to model the fracture behaviour of 
polycrystalline alumina. Experimental results show 
that the fracture energy reaches a value of 76 N m - 1 
for coarse grained alumina and does not depend on 
geometry or on testing conditions. 

A finite element analysis of SENB specimens was 
performed. Special care was taken in choosing the 
parameters of the softening curve by means of experi- 
mental results. The agreement between numerical and 
experimental results is very encouraging. It was dem- 
onstrated that the influence of geometry and grain size 
on fracture behaviour of Al2 03  is accurately predicted 
by the CCM. The shape of the softening curve seems 
to find t w o  diverse mechanisms of toughening, both 
acting in the wake of the crack. The first one, concen- 
trated 100 or 200 lam just behind the crack tip, is able 
to develop high cohesive stresses and is responsible for 
the maximum load these materials can bear. The sec- 
ond one is spread out up to some millimetres in the 
wake of the crack and controls the brittleness of the 
behaviour in the tail of the load-displacement curves. 
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